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1 Introduction

Our program of research aims at developing a stochas-

tic description of the residual acceleration field onboard

spacecraft (a-jitter) [1, 2] to describe in quantitative de-
tail its effect on fluid motion 1-3,4, 5]. Our main premise

is that such a statistical description is necessary in those
cases in which the characteristic time scales of the pro-

cess under investigation are long compared with the cor-

relation time of a-jitter. Although a clear separation
between time scales makes this approach feasible, there

remain several difficulties of practical nature: (i), 9-

jitter time series are not statistically stationary but rather
show definite dependences on factors such as active or

rest crew periods; (ii), it is very difficult to extract re-

liably the low frequency range of the power spectrum
of the acceleration field. This range controls the magni-

tude of diffusive processes; and (iii), models used to date

are Gaussian, but there is evidence that large amplitude

disturbances occur much more frequently than a Gaus-

sian distribution would predict. The lack of stationarity

does not constitute a severe limitation in practice, since

the intensity of the stochastic components changes very

slowly during space missions (perhaps over times of the

order of hours). A separate analysis of large amplitude

disturbances has not been undertaken yet, but it does not
seem difficult a priori to devise models that may describe

this range better than a Gaussian distribution. The ef-

fect of low frequency components, on the other hand, is

more difficult to ascertain, partly due to the difficulty as-

sociated with measuring them, and partly because they

may be indistinguishable from slowly changing aver-

ages. This latter effect is further complicated by the

lack of statistical stationarity of the time series.

Recent work has focused on the effect of stochastic

modulation on the onset of oscillatory instabilities [6]

as an example of resonant interaction between the driv-

ing acceleration and normal modes of the system, and

on cavity flow [7] as an example of how an oscillatory

response under periodic driving becomes diffusive if the

forcing is random instead. This paper describes three

different topics that illustrate behavior that is peculiar to

a stochastic acceleration field. In the first case, we show

that g-jitter can induce effective attractive or repulsive

forces between a pair of spherical particles that are sus-

pended in an incompressible fluid of different density

provided that the momentum diffusion length is larger

than the inter particle separation (as in the case in most

colloidal suspensions). Second, a stochastic modulation

of the control parameter in the vicinity of a pitchfork or

supercritical bifurcation is known not to affect the loca-
tion of the threshold. We show, however, that resonance

between the modulation and linearly stable modes close

to onset can lead to a shift in threshold. Finally, we

discuss the classical problem of vorticity diffusion away

from a plane boundary that is being vibrated along its

own plane. Periodic motion with zero average vorticity

production results in an exponential decay of the vortic-

ity away from the boundary. Random vibration, on the
other hand, results in power law decay away from the

boundary even if vorticity production averages to zero.

2 Acceleration induced interactions between

pairs of particles

Consider an ensemble of spherical particles of radii Ri

and density pp suspended in an incompressible fluid of

density p/and shear viscosity #. If the fluid is enclosed

by perfectly rigid boundaries, the buoyancy force acting
on each suspended particle is F 4= _ (p_- pl)n_i(t),
where if(t) is the effective acceleration field. In the frame

of reference co-moving with the container enclosing the

fluid, if(t) is a body force, with intensity equal to the
value of the acceleration of the container. For containers

of reasonable size in a microgravity environment, i can

be assumed to be spatially uniform. The hydrodynamic
interaction between two such particles is given in the

overdamped limit of Stokes flow by [8, 9],

d_ = (,,,21 - ,o11)-Pl + (,,,2_ - ,,,_1) • _, (1)
dt

where Yis the relative position of particle 2 with respect

to particle 1,/_i is the force acting on the i-th particle,
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and a,q are hydrodynamic mobility tensors, given, e.g.,
in references [8, 9]. After some straightforward algebra,

the leading contribution at distances large compared to

the particle radii is given by,

d dt- p,/ - Rx

3_ ; _- +_ z-7_ .._(t),(2)

where 2 is the identity tensor. The first term in the right
hand side describes the relative motion of two indepen-

dentparficles of different size. Both the longitudinal and
transverse components of the second term in the right

hand side of Eq. (2) are of the form,

dr _ Ag(t), (3)
dt r

where, for the longitudinal component, A = (pp-pf)(R 3-

R_)/3#.
Consider an initial interparticle separation ro >> Ri.

In this case, and for times shorter than the average time

needed for the two particles to coalesce, the quantity y =

r2/2A is a Wicncr process if g(t) is Gaussian and white

(( g ) = O, (g(t)g(t') ) = 2D_(t - t')), and therefore the

conditional probability for r is,

(r-__q)_
r

P(r, tlro, to) = e-16PA=" ,o_. (4)
IAIv/4rrD(t- to)

The ensemble averagc of r, ( r ) can be computed ana-

lytically,

( r ) = [2D(t -- t0) ] e 32A2D(t--tO)

D-a�2 - 2lAI v/2D( t - to)

where Dp(z) is a parabolic cylinder function [10] (for-
mula 9.240). For short times, the asymptotic form of

Dp(z) for large z allows the computation of ( r )

(r)=ro(1 Z2D(t-t°))r_ , (6)

which decreases in time regardless of the sign of A.

Therefore g-jitter induces an effective hydrodynamic at-

traction between pairs of particles. The attractive inter-
action is not confined to short times, but it arises directly

from the 1/r dependence in Eq. (3). By taking the aver-

age of Eq. (3), using the Furutsu-Novikov theorem [11]

STOCHASTIC RESONANCE AND BIFURCATIONS

and the fact that the noise is Gaussian and white, one

finds,

d(r) =AD/_l/r(t)\
d---7- \ _-7-_y/' (7)

where 8/@(t) stands for functional derivative with re-

spect to g. Directly fromEq. (3), we find that_(1/r(t))/@(t) =

-A/r 3, and therefore,

d(r)dt =-A2D(_> , (8)

identical to Eq. (6)with ]/r] replaced by ( 1/r 3 ). Since

r is a positive quantity, d ( r ) �dr < 0 for all values of r.
It is also interesting to note that the effective attractive
interaction is not confined to the term proportional to

1/r in the hydrodynamic mobility, but that attractive

contributions arise from higher powers of 1/r as well.

In fact, this attraction is generic for over damped motion

and multiplicative noise provided that the mobility is a

decaying function of the interparticle separation [ 12].

The question naturally arises as to the behavior of

pairs of particles near contact, or of particles near a
solid wall. In either case, lubrication theory allows

the calculation of the mobility tensor. The longitudi-

nal component vanishes linearly with interpanicle dis-
tance whereas the transverse component becomes non-

analytic (diverges logarithmically at short distances) [9].
In both cases, the mobility increases with interparticle

separation leading to an average repulsion (d ( r ) �dr >

0) following the same arguments given above.

3 Stochastic resonance and bifurcations

Consider the normal form appropriate for a pitchfork

bifurcation in which A is the linearly unstable mode and

B is some linearly stable mode. Then,

1 0][A] 1d_ B = 0 -_ B + 0 +

[mliml liA]rn21 rn22 B g(t), (9)

with ¢ << 1 and the remaining coefficients of order one.

We further assume that D ,,- O(e). Close to threshold,

A changes in a slow scale T = et, compared with either
the relaxation of B (of order one) or the noise.

If the coupling to the unstable mode B is neglected,
it is known that the threshold in the stochastic case re-

mains at e = 0 [13, 14]. This can be seen by averaging

Eq. (9) over the fast time scale so that (A(T)o(t))
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4 FLOW DUE TO A RANDOMLY VIBRATING PLANE BOUNDARY

A(T) (g(t)) = 0. The resulting equation for A(T) no

longer depends on the noise. If, on the other hand, both

equations are averaged over the fast time scale, we find

that,

(Bg) -- (B)(9) + \-_g / = Drn2aA +... (10)

where we have used the Furutsu-Novikov theorem [15,

16]. Therefore, the correlation of B(t)g(t) itself evolves
over the slow time scale T as a consequence of the

fact that the equations for both A and B contain ex-

actly the same stochastic process. The coefficient of
the linear term in the equation for A(T) is now e +

Dra21m12 and hence the bifurcation point will occur at

c = -Dma2ra21 < O.

4 Flow due to a randomly vibrating plane

boundary

Consider a semi-infinite fluid layer occupying the re-

gion x > 0 and a solid boundary at x = 0 which is

being displaced along the y direction with a prescribed,

time-dependent velocity vo(t). For an incompressible,

Newtonian fluid, the y component of the velocity field

in the fluid v satisfies,

Ov 0%
0--[= V Oz----7' (ll)

with boundary conditions v(x = O,t) = vo(t) and v(x --+

oc, t) = O. We consider a function vo(t) which is a

stochastic process in time, and hence proceed to solve

the initial value problem (11) with a stochastic boundary

condition. Let vo(t) be a Gaussian, white stochastic pro-

cess with mean (vo(t)) = 0 and variance (vo(t)vo(t')) =

2DS(t - t'). We find that,

(v2(x,t)) = 2D.____u1 + (12)
71-:r 2 _'t "

an approximate description of the spectral components
of the residual acceleration field in microgravity, as well

as a convenient way to interpolate between the white
noise and monochromatic noise limits. Narrow band

noise is a Gaussian process that satisfies, [17]

(vo(t)) = O, (vo(t)vo(t')} = v_e-ft-t'l/_cosfl(t - t'),
(14)

where ( ) denotes an ensemble average, fi is a character-

istic angular frequency that corresponds to the peak in

the spectral density of the process, and r is a correlation
or coherence time determining the width of that peak. In

essence, this process describes a periodic signal of char-

acteristic frequency g_, but that only remains coherent
for a time r on average. The amplitudes are distributed

gaussianly with variance v_. The white noise limit is
obtained when f_r --+ 0 while vo27- = D remains finite,

whereas the monochromatic noise limit corresponds to

f_r --+ _ with v_ finite. We do not attempt to find a

general solution of Eq. (1 1) for an initially quiescent
fluid and narrow band forcing. We focus instead on long

time or statistically stationary averages. We find,

F: (15)
o_

where P(w) is the power spectrum that corresponds to
the autocorrelation function (14). The integral can be

carried out explicitly in the limits of small and large r.

In the vicinity of the white noise limit, we find,

<v2(x) > _ 2uv_'r 1 Vo2(120 + 4_2x4/t.'2)u 3 7.2 +O(r3).
7rx 2 2 7rx 6

(16)

The first term in the right hand side is the white noise

limit already given in Eq. (13). The first correction term

is also a power law decaying as x 8 away from the wall.

The low frequency part of the power spectrum dominates

the decay of the velocity field at long distances and leads
to a very slow rate of decay, In the opposite limit of

-rrightarrowoc, we find,

The velocity disturbance propagates into the fluid dif-

fusively, with a diffusion coefficient v. At long times,
however, even though the vorticity produced at the wall

averages to zero, the velocity does not decay exponen-

tially away from the wall, but rather as a power law,

(v_(x,t_+_)) _ 2Du
_X2 "

(13)

We now turn to the case in which the velocity of the

boundary is not white, but a narrow band noise instead.
As discussed elsewhere [2], narrow band noise provides

v_u { [x-_ (1-2)+Txi2(ft+l/r) ]e -'_7rX 2 12

+ [_(l+2)-rxi2'f_;1/r)]e-'_ }

In the limit r _ oe the term within braces vanishes and

one recovers the classical result that the characteristic

velocity x/_ decays exponentially into the fluid with

(17)
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a characteristic decay length given by V/-_-/fL If, on the
other hand, the spectrum of the forcing function has a

finite width, the velocity field still decays exponentially,

but the decay length increases to V/2_,/(f_ - I/T).
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